Back to Search Start Over

Photocatalytic degradation of sulfamethoxazole with Co-CuS@TiO2 heterostructures under solar light irradiation

Photocatalytic degradation of sulfamethoxazole with Co-CuS@TiO2 heterostructures under solar light irradiation

Authors :
Oumaima Mertah
Almudena Gómez-Avilés
Amine Slassi
Abdelhak Kherbeche
Carolina Belver
Jorge Bedia
Source :
Catalysis Communications, Vol 175, Iss , Pp 106611- (2023)
Publication Year :
2023
Publisher :
Elsevier, 2023.

Abstract

This work describes a successful approach to dope copper sulfide with different amounts of Co2+ ions and combine it with TiO2 through a simple one-step hydrothermal process. Compared with the bare CuS, the synthesized Co-CuS@TiO2 heterostructures promote charge transport and restrict the recombination of photoexcited electrons and holes. The intrinsic properties of Co-CuS@TiO2 samples are systematically examined through experimental characterizations and density functional theory (DFT) theoretical calculations. Photocatalytic degradation tests under simulated solar light irradiation were performed using sulfamethoxazole degradation as a model emerging persistent antibiotic. The photocatalytic performance was enhanced after cobalt doping, and the heterostructure doped with 3% of Co exhibited the best degradation with an apparent rate constant of 0.0216 min−1. This sample also showed a much faster settling than bare TiO2, which indicates a much easier separation of the reaction media after being used. The enhancement of degradation is attributed to the increased light absorption and the more efficient charge transfer and separation. The plausible photocatalytic degradation mechanism of sulfamethoxazole was also proposed. This study presents a novel strategy to prepare potential photocatalysts for the elimination of emerging pollutants.

Details

Language :
English
ISSN :
18733905
Volume :
175
Issue :
106611-
Database :
Directory of Open Access Journals
Journal :
Catalysis Communications
Publication Type :
Academic Journal
Accession number :
edsdoj.05cc20eb93644d690c03d2e1479a6df
Document Type :
article
Full Text :
https://doi.org/10.1016/j.catcom.2023.106611