Back to Search Start Over

A Review of Glass Fibre Recycling Technology Using Chemical and Mechanical Separation of Surface Sizing Agents

Authors :
Jih-Hsing Chang
Ya-Shiuan Tsai
Pei-Yu Yang
Source :
Recycling, Vol 6, Iss 4, p 79 (2021)
Publication Year :
2021
Publisher :
MDPI AG, 2021.

Abstract

Glass fiber is widely used in various modern industrial applications because it has the advantages of good electrical insulation performance and good process ability. Inevitably, some flawed glass fiber generated during manufacturing processes becomes waste and, in recent years, the treatment or recycling of glass fiber waste has become an environmental concern. Since glass fiber is brittle, non-wearing, and can easily generate static electricity after friction, the surface of glass fiber must be coated with a wetting agent (i.e., surface sizing agent) to overcome these disadvantages. However, glass fiber waste cannot be directly recycled as glass raw materials due to the presence of the surface sizing agent and the high content of sodium element. Therefore, there is a need to develop a feasible technology for removal of surface sizing agent in order to recycle glass fiber waste. In this study, two methods were used to remove surface sizing agent from glass fiber waste. After removing the surface sizing agent, the treated glass fiber waste can replace sand particles for manufacturing controlled low-strength material (CLSM). The first method for removing surface sizing agent used different organic solvents such as ethyl acetate to dissolve the surface coating (i.e., surface sizing agent). Then, an optical microscope was used to observe the surface changes before and after such removal treatments. The second method involved grinding glass fiber waste into a fine powder and heating it to a high temperature. An X-ray diffractometer (XRD) and X-ray fluorescence (XRF) were used to analyze the surface characteristics of the glass fiber waste. The experimental results showed that different organic solvents could not effectively remove the surface sizing agent, even if the glass fiber waste was processed by ultrasonic vibration for 5 h. In contrast, after high heating at 800 °C for 2 h, the surface sizing agent could be removed, and glass fiber waste transformed to cristobalite. The CLSM concrete produced by mixing cristobalite with cement in an appropriate proportion can meet the CLSM specification standard in Taiwan.

Details

Language :
English
ISSN :
23134321
Volume :
6
Issue :
4
Database :
Directory of Open Access Journals
Journal :
Recycling
Publication Type :
Academic Journal
Accession number :
edsdoj.05aa11140bc64453bb147b585f1e26d9
Document Type :
article
Full Text :
https://doi.org/10.3390/recycling6040079