Back to Search Start Over

Unraveling the deep learning gearbox in optical coherence tomography image segmentation towards explainable artificial intelligence

Authors :
Peter M. Maloca
Philipp L. Müller
Aaron Y. Lee
Adnan Tufail
Konstantinos Balaskas
Stephanie Niklaus
Pascal Kaiser
Susanne Suter
Javier Zarranz-Ventura
Catherine Egan
Hendrik P. N. Scholl
Tobias K. Schnitzer
Thomas Singer
Pascal W. Hasler
Nora Denk
Source :
Communications Biology, Vol 4, Iss 1, Pp 1-12 (2021)
Publication Year :
2021
Publisher :
Nature Portfolio, 2021.

Abstract

Maloca et al. implement convolutional neural network (CNN) to automatically segment OCT images obtained from cynomolgus monkeys. The results are compared to annotations generated by human graders. The ambiguity in ground truth had noteworthy impact on machine learning results, which could be visualized.

Subjects

Subjects :
Biology (General)
QH301-705.5

Details

Language :
English
ISSN :
23993642
Volume :
4
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Communications Biology
Publication Type :
Academic Journal
Accession number :
edsdoj.05979fb5418e464a9cf6a4f9447c2d75
Document Type :
article
Full Text :
https://doi.org/10.1038/s42003-021-01697-y