Back to Search Start Over

CMOS backend-of-line compatible memory array and logic circuitries enabled by high performance atomic layer deposited ZnO thin-film transistor

Authors :
Wenhui Wang
Ke Li
Jun Lan
Mei Shen
Zhongrui Wang
Xuewei Feng
Hongyu Yu
Kai Chen
Jiamin Li
Feichi Zhou
Longyang Lin
Panpan Zhang
Yida Li
Source :
Nature Communications, Vol 14, Iss 1, Pp 1-11 (2023)
Publication Year :
2023
Publisher :
Nature Portfolio, 2023.

Abstract

Abstract The development of high-performance oxide-based transistors is critical to enable very large-scale integration (VLSI) of monolithic 3-D integrated circuit (IC) in complementary metal oxide semiconductor (CMOS) backend-of-line (BEOL). Atomic layer deposition (ALD) deposited ZnO is an attractive candidate due to its excellent electrical properties, low processing temperature below copper interconnect thermal budget, and conformal sidewall deposition for novel 3D architecture. An optimized ALD deposited ZnO thin-film transistor achieving a record field-effect and intrinsic mobility (µ FE /µ o ) of 85/140 cm2/V·s is presented here. The ZnO TFT was integrated with HfO2 RRAM in a 1 kbit (32 × 32) 1T1R array, demonstrating functionalities in RRAM switching. In order to co-design for future technology requiring high performance BEOL circuitries implementation, a spice-compatible model of the ZnO TFTs was developed. We then present designs of various ZnO TFT-based inverters, and 5-stage ring oscillators through simulations and experiments with working frequency exceeding 10’s of MHz.

Subjects

Subjects :
Science

Details

Language :
English
ISSN :
20411723
Volume :
14
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
edsdoj.054db449a3d24cb4890317b069cfc85b
Document Type :
article
Full Text :
https://doi.org/10.1038/s41467-023-41868-5