Back to Search
Start Over
Laboratory Tests Using Distributed Fiber Optical Sensors for Strain Monitoring
- Source :
- Sensors, Vol 25, Iss 2, p 324 (2025)
- Publication Year :
- 2025
- Publisher :
- MDPI AG, 2025.
-
Abstract
- Using fiber optics as a tool for different kinds of geotechnical monitoring can be highly attractive and cost-effective when compared to conventional instruments, such as piezometers and inclinometers, among others. A single fiber optic cable may cover a larger monitoring area compared to conventional instrumentation and allows for monitoring more than one physical quantity with the same fiber optic cable. The literature provides several different examples of distributed fiber optic systems usage. For using any sensor, a calibration curve and parameters are required. In the case of strain sensors, calibration is required to derive strain values from the frequency measurement quantity. However, fiber optic sensor cable manufacturers do not often provide cable calibration parameters, and researchers should consult the specialized literature. This article thus presents a bench adjusted for tests with single-mode fiber optic cables, as well as results of tensile tests for defining the function of strain variations in two different optical fiber cables manufactured by different companies using two different distributed interrogators. This paper also proposes a methodology for calibrating fiber optic cable deformation. A few manufacturers of fiber optic cables aim at civil engineering applications. Therefore, we propose a calibration methodology to show the possibility of obtaining calibration parameters of any fiber optic cable, even those manufactured for telecommunications purposes and not only for cables manufactured for civil engineering use. Thus, researchers will not be restricted to the acquisition of special cables for their applications. The results allowed us to conclude that the application of calibrated fiber optic sensors to experimental pile foundations permits the evaluation of the load–displacement behavior of these elements under different loading conditions.
Details
- Language :
- English
- ISSN :
- 14248220
- Volume :
- 25
- Issue :
- 2
- Database :
- Directory of Open Access Journals
- Journal :
- Sensors
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.054603141fa94696ab646eecf1521880
- Document Type :
- article
- Full Text :
- https://doi.org/10.3390/s25020324