Back to Search Start Over

miR-132-3p and KLF7 as novel regulators of aortic stiffening-associated EndMT in type 2 diabetes mellitus

Authors :
Melanie S. Hulshoff
Isabel N. Schellinger
Xingbo Xu
Jolien Fledderus
Sandip K. Rath
Fang Cheng Wong
Sabine Maamari
Josephina Haunschild
Guido Krenning
Uwe Raaz
Elisabeth M. Zeisberg
Source :
Diabetology & Metabolic Syndrome, Vol 15, Iss 1, Pp 1-15 (2023)
Publication Year :
2023
Publisher :
BMC, 2023.

Abstract

Abstract Background The prevalence of diabetes mellitus has risen considerably and currently affects more than 422 million people worldwide. Cardiovascular diseases including myocardial infarction and heart failure represent the major cause of death in type 2 diabetes (T2D). Diabetes patients exhibit accelerated aortic stiffening which is an independent predictor of cardiovascular disease and mortality. We recently showed that aortic stiffness precedes hypertension in a mouse model of diabetes (db/db mice), making aortic stiffness an early contributor to cardiovascular disease development. Elucidating how aortic stiffening develops is a pressing need in order to halt the pathophysiological process at an early time point. Methods To assess EndMT occurrence, we performed co-immunofluorescence staining of an endothelial marker (CD31) with mesenchymal markers (α-SMA/S100A4) in aortic sections from db/db mice. Moreover, we performed qRT-PCR to analyze mRNA expression of EndMT transcription factors in aortic sections of db/db mice and diabetic patients. To identify the underlying mechanism by which EndMT contributes to aortic stiffening, we used aortas from db/db mice and diabetic patients in combination with high glucose-treated human umbilical vein endothelial cells (HUVECs) as an in vitro model of diabetes-associated EndMT. Results We demonstrate robust CD31/α-SMA and CD31/S100A4 co-localization in aortic sections of db/db mice which was almost absent in control mice. Moreover, we demonstrate a significant upregulation of EndMT transcription factors in aortic sections of db/db mice and diabetic patients. As underlying regulator, we identified miR-132-3p as the most significantly downregulated miR in the micronome of db/db mice and high glucose-treated HUVECs. Indeed, miR-132-3p was also significantly downregulated in aortic tissue from diabetic patients. We identified Kruppel-like factor 7 (KLF7) as a target of miR-132-3p and show a significant upregulation of KLF7 in aortic sections of db/db mice and diabetic patients as well as in high glucose-treated HUVECs. We further demonstrate that miR-132-3p overexpression and KLF7 downregulation ameliorates EndMT in high glucose-treated HUVECs. Conclusions We demonstrate for the first time that EndMT contributes to aortic stiffening in T2D. We identified miR-132-3p and KLF7 as novel EndMT regulators in this context. Altogether, this gives us new insights in the development of aortic stiffening in T2D.

Details

Language :
English
ISSN :
17585996
Volume :
15
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Diabetology & Metabolic Syndrome
Publication Type :
Academic Journal
Accession number :
edsdoj.05337be52fd4401f9524f4a2313004de
Document Type :
article
Full Text :
https://doi.org/10.1186/s13098-022-00966-y