Back to Search Start Over

Influence of Temperature and Electrolyte Composition on the Performance of Lithium Metal Anodes

Authors :
Sanaz Momeni Boroujeni
Alexander Fill
Alexander Ridder
Kai Peter Birke
Source :
Batteries, Vol 7, Iss 4, p 67 (2021)
Publication Year :
2021
Publisher :
MDPI AG, 2021.

Abstract

Lithium metal anodes have again attracted widespread attention due to the continuously growing demand of cells with higher energy density. However, the lithium deposition mechanism and the affecting process of influencing factors, such as temperature, cycling current density, and electrolyte composition are not fully understood and require further investigation. In this article, the behavior of lithium metal anode at different temperatures (25, 40, and 60 ∘C), lithium salts, electrolyte concentrations (1 and 2 M), and the applied cell current (equivalent to 0.5 C, 1 C, and 2 C). is investigated. Two different salts were evaluated: lithium bis(fluorosulfonyl)imide (LiFSI) and lithium bis(trifluoromethanesul-fonyl)imide (LiTFSI). The cells at a medium temperature (40 ∘C) show the highest Coulombic efficiency (CE). However, shorter cycle life is observed compared to the experiments at room temperature (25 ∘C). Regardless of electrolyte type and C-rate, the higher temperature of 60 ∘C provides the worst Coulombic efficiency and cycle life among those at the examined temperatures. A higher C-rate has a positive effect on the stability over the cycle life of the lithium cells. The best performance in terms of long cycle life and relatively good Coulombic efficiency is achieved by fast charging the cell with high concentration LiFSI in 1,2-dimethoxyethane (DME) electrolyte at a temperature of 25 ∘C. The cell has an average Coulombic efficiency of 0.987 over 223 cycles. In addition to galvanostatic experiments, Electrochemical Impedance Spectroscopy (EIS) measurements were performed to study the evolution of the interface under different conditions during cycling.

Details

Language :
English
ISSN :
23130105
Volume :
7
Issue :
4
Database :
Directory of Open Access Journals
Journal :
Batteries
Publication Type :
Academic Journal
Accession number :
edsdoj.0517b0f3adb742fca3b5e1ea8c43499e
Document Type :
article
Full Text :
https://doi.org/10.3390/batteries7040067