Back to Search Start Over

Generation and functional characterization of a multigene-modified NK101 cell line exerting diverse mechanisms of antitumor action

Authors :
Injung Hwang
Hyun Tak Jin
Moon Cheol Kang
Tae Yoon Kim
Young Chul Sung
Sae Won Kim
Source :
OncoImmunology, Vol 11, Iss 1 (2022)
Publication Year :
2022
Publisher :
Taylor & Francis Group, 2022.

Abstract

Clonal cell line-based, multigene-modified, off-the-shelf NK cell therapeutics are emerging as the new frontier of adoptive cellular immunotherapy. Here, we utilized a newly established NK cell line, NK101, as a backbone to derive multifaceted killer cells armored with various antitumor modalities through repeated cycles of genetic modification and clonal selection. First, NK101 cells were transduced with a tricistronic lentiviral vector expressing CD7, CD28, and cytosine deaminase (CD). The resulting cell line demonstrated enhanced cytotoxicity against B7+ tumors and exerted bystander killing effects on neighboring tumor cells upon 5-FC treatment. Second, engineered NK101 cells were again transduced with a bicistronic vector expressing membrane-bound interleukin-15 (mbIL-15) and dominant negative TGFβ type II receptor (DNTβRII). Ectopic expression of mbIL-15 resulted in further augmentation of lytic activities against all tested target cells by inducing upregulation of multiple activating receptors, while that of DNTβRII allowed the cells to maintain heightened cytotoxicity in the presence of TGFβ. Finally, dual-transduced NK101 cells were modified to express chimeric antigen receptors (CARs) targeting either a solid tumor antigen (EpCAM) or a hematologic tumor antigen (FLT3). The final engineered products not only demonstrated antigen-specific killing activities in vitro but also exerted strong tumor-inhibitory effects in preclinical models of metastatic solid tumor and hematologic malignancy. Notably, combined treatment with 5-FC further enhanced antitumor efficacy of engineered NK101 in the solid tumor model. Our results demonstrate successful generation of multigene-modified NK101 cell therapeutics exerting diverse mechanisms of antitumor action – activation receptor-mediated innate killing, antigen-specific killing, and bystander effect-mediated killing.

Details

Language :
English
ISSN :
2162402X
Volume :
11
Issue :
1
Database :
Directory of Open Access Journals
Journal :
OncoImmunology
Publication Type :
Academic Journal
Accession number :
edsdoj.04d3c3e935ba4e87863dea889393011a
Document Type :
article
Full Text :
https://doi.org/10.1080/2162402X.2021.2014655