Back to Search Start Over

Contact Guidance Effect and Prevention of Microfouling on a Beta Titanium Alloy Surface Structured by Electron-Beam Technology

Authors :
Sara Ferraris
Fernando Warchomicka
Jacopo Barberi
Andrea Cochis
Alessandro Calogero Scalia
Silvia Spriano
Source :
Nanomaterials, Vol 11, Iss 6, p 1474 (2021)
Publication Year :
2021
Publisher :
MDPI AG, 2021.

Abstract

Nano- and micro-structuring of implantable materials constitute a promising approach to introduce mechanical contact guidance effect, drive cells colonization, as well as to prevent bacteria adhesion and biofilm aggregation, through antifouling topography. Accordingly, this paper aims to extend the application of e-beam surface texturing and nano-structuring to the beta titanium alloys, which are of great interest for biomedical implants because of the low Young modulus and the reduction of the stress shielding effect. The paper shows that surface texturing on the micro-scale (micro-grooves) is functional to a contact guidance effect on gingival fibroblasts. Moreover, nano-structuring, derived from the e-beam surface treatment, is effective to prevent microfouling. In fact, human fibroblasts were cultivated directly onto grooved specimens showing to sense the surface micro-structure thus spreading following the grooves’ orientation. Moreover, Staphylococcus aureus colonies adhesion was prevented by the nano-topographies in comparison to the mirror-polished control, thus demonstrating promising antifouling properties. Furthermore, the research goes into detail to understand the mechanism of microfouling prevention due to nano-topography and microstructure.

Details

Language :
English
ISSN :
20794991
Volume :
11
Issue :
6
Database :
Directory of Open Access Journals
Journal :
Nanomaterials
Publication Type :
Academic Journal
Accession number :
edsdoj.04b9d0fde5a94eaeb40f53470675a398
Document Type :
article
Full Text :
https://doi.org/10.3390/nano11061474