Back to Search Start Over

Advanced Wind Speed Prediction Model Based on a Combination of Weibull Distribution and an Artificial Neural Network

Authors :
Athraa Ali Kadhem
Noor Izzri Abdul Wahab
Ishak Aris
Jasronita Jasni
Ahmed N. Abdalla
Source :
Energies, Vol 10, Iss 11, p 1744 (2017)
Publication Year :
2017
Publisher :
MDPI AG, 2017.

Abstract

One of the most crucial prerequisites for effective wind power planning and operation in power systems is precise wind speed forecasting. Highly random fluctuations of wind influenced by the conditions of the atmosphere, weather and terrain result in difficulties of forecasting regardless of whether it is short-term or long-term. The current study has developed a method to model wind speed data predictions with dependence on seasonal wind variations over a particular time frame, usually a year, in the form of a Weibull distribution model with an artificial neural network (ANN). As a result, the essential dependencies between the wind speed and seasonal weather variation are exploited. The proposed model utilizes the ANN to predict the wind speed data, which has similar chronological and seasonal characteristics to the actual wind data. This model was applied to wind speed databases from selected sites in Malaysia, namely Mersing, Kudat, and Kuala Terengganu, to validate the proposed model. The results indicate that the proposed hybrid artificial neural network (HANN) model is capable of depicting the fluctuating wind speed during different seasons of the year at different locations.

Details

Language :
English
ISSN :
19961073
Volume :
10
Issue :
11
Database :
Directory of Open Access Journals
Journal :
Energies
Publication Type :
Academic Journal
Accession number :
edsdoj.0473a120ba347b5b84adc16e84714cd
Document Type :
article
Full Text :
https://doi.org/10.3390/en10111744