Back to Search
Start Over
Single-domain antibody delivery using an mRNA platform protects against lethal doses of botulinum neurotoxin A
- Source :
- Frontiers in Immunology, Vol 14 (2023)
- Publication Year :
- 2023
- Publisher :
- Frontiers Media S.A., 2023.
-
Abstract
- Single-domain antibodies (sdAbs, VHHs, or nanobodies) are a promising tool for the treatment of both infectious and somatic diseases. Their small size greatly simplifies any genetic engineering manipulations. Such antibodies have the ability to bind hard-to-reach antigenic epitopes through long parts of the variable chains, the third complementarity-determining regions (CDR3s). VHH fusion with the canonical immunoglobulin Fc fragment allows the Fc-fusion single-domain antibodies (VHH-Fc) to significantly increase their neutralizing activity and serum half-life. Previously we have developed and characterized VHH-Fc specific to botulinum neurotoxin A (BoNT/A), that showed a 1000-fold higher protective activity than monomeric form when challenged with five times the lethal dose (5 LD50) of BoNT/A. During the COVID-19 pandemic, mRNA vaccines based on lipid nanoparticles (LNP) as a delivery system have become an important translational technology that has significantly accelerated the clinical introduction of mRNA platforms. We have developed an mRNA platform that provides long-term expression after both intramuscular and intravenous application. The platform has been extensively characterized using firefly luciferase (Fluc) as a reporter. An intramuscular administration of LNP-mRNA encoding VHH-Fc antibody made it possible to achieve its rapid expression in mice and resulted in 100% protection when challenged with up to 100 LD50 of BoNT/A. The presented approach for the delivery of sdAbs using mRNA technology greatly simplifies drug development for antibody therapy and can be used for emergency prophylaxis.
Details
- Language :
- English
- ISSN :
- 16643224
- Volume :
- 14
- Database :
- Directory of Open Access Journals
- Journal :
- Frontiers in Immunology
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.045a699a392047c2a0f489f33838e32a
- Document Type :
- article
- Full Text :
- https://doi.org/10.3389/fimmu.2023.1098302