Back to Search
Start Over
Flux focusing with a superconducting nanoneedle for scanning SQUID susceptometry
- Source :
- Microsystems & Nanoengineering, Vol 9, Iss 1, Pp 1-7 (2023)
- Publication Year :
- 2023
- Publisher :
- Nature Publishing Group, 2023.
-
Abstract
- Abstract A nanofabricated superconducting quantum interference device (nano-SQUID) is a direct and sensitive flux probe used for magnetic imaging of quantum materials and mesoscopic devices. Due to the functionalities of superconductive integrated circuits, nano-SQUIDs fabricated on chips are particularly versatile, but their spatial resolution has been limited by their planar geometries. Here, we use femtosecond laser 3-dimensional (3D) lithography to print a needle onto a nano-SQUID susceptometer to overcome the limits of the planar structure. The nanoneedle coated with a superconducting shell focused the flux from both the field coil and the sample. We performed scanning imaging with such a needle-on-SQUID (NoS) device on superconducting test patterns with topographic feedback. The NoS showed improved spatial resolution in both magnetometry and susceptometry relative to the planarized counterpart. This work serves as a proof-of-principle for integration and inductive coupling between superconducting 3D nanostructures and on-chip Josephson nanodevices.
- Subjects :
- Technology
Engineering (General). Civil engineering (General)
TA1-2040
Subjects
Details
- Language :
- English
- ISSN :
- 20557434
- Volume :
- 9
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Microsystems & Nanoengineering
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.0459a7c9e8364769b157090063ac36f6
- Document Type :
- article
- Full Text :
- https://doi.org/10.1038/s41378-023-00553-9