Back to Search Start Over

Rayleigh-Plateau Dissipative Instability

Authors :
Oksana L. Andreeva
Leonid A. Bulavin
Viktor I. Tkachenko
Source :
East European Journal of Physics, Iss 2, Pp 38-47 (2020)
Publication Year :
2020
Publisher :
V.N. Karazin Kharkiv National University Publishing, 2020.

Abstract

The instability of a freely falling jet of liquid in air taking into account the viscosity of the contacting media is considered. In neglecting the viscosities of both media, instability was studied by Rayleigh and Plateau. They showed that instability develops as a result of the action of surface forces, and is expressed in a change in the cylindrical shape of the boundary of a freely falling jet of liquid with air into a sequence of spherical drops. In subsequent works, by phenomenological consideration of viscosity by means of the Ohnesorge number, it is shown that the viscosity of each of the contacting media affects the nature of the instability. However, this method of taking viscosity into account is not entirely correct, because does not take into account the specificity of the boundary conditions existing at the interface. It is proposed to use percolation boundary conditions, the validity of which is proved by the example of the exact determination of the threshold velocity of occurrence of Kelvin-Helmholtz instability. A dispersion equation of the Rayleigh-Plateau problem with percolation boundary conditions that describes the instability taking into account the viscosity of both media is obtained. The dissipative nature of the development of such instabilities is substantiated. The growth rates of instabilities are determined in cases when: the jet and medium have a low viscosity (ideal fluids); the jet is characterized by high viscosity, and the environment is small; the jet and the environment are highly viscous. It is shown that the theoretical model of droplet decay of the jet in the absence of viscosity of both media is quite good, in quantitative terms, consistent with experimental results. The maximum increment is equal γmaxKGγ≈0.32, against the Rayleigh-Plateau increment γmaxKGγ≈0.34, for disturbances with the same wave number XMAX≈0.37. It was also shown that for viscous jets and a weakly viscous environment, the instability increment describes the experimental results with a rather high degree of accuracy. Numerical calculations show that for jets of comparable viscosity, the instability increment decreases with increasing viscosity of the environment. If the viscosity of the environment is constant, then the increment of instability will be greater where the viscosity of the stream is higher. It is shown that the results of theoretical calculations are in good agreement with the available experimental data.

Details

Language :
English, Russian, Ukrainian
ISSN :
23124334 and 23124539
Issue :
2
Database :
Directory of Open Access Journals
Journal :
East European Journal of Physics
Publication Type :
Academic Journal
Accession number :
edsdoj.0421e8da08d04ff381659b575352e80a
Document Type :
article
Full Text :
https://doi.org/10.26565/2312-4334-2020-2-02