Back to Search Start Over

Engineering Multigenerational Host-Modulated Microbiota against Soilborne Pathogens in Response to Global Climate Change

Authors :
Paola Durán
Gonzalo Tortella
Michael J. Sadowsky
Sharon Viscardi
Patricio Javier Barra
Maria de la Luz Mora
Source :
Biology, Vol 10, Iss 9, p 865 (2021)
Publication Year :
2021
Publisher :
MDPI AG, 2021.

Abstract

Crop migration caused by climatic events has favored the emergence of new soilborne diseases, resulting in the colonization of new niches (emerging infectious diseases, EIDs). Soilborne pathogens are extremely persistent in the environment. This is in large part due to their ability to reside in the soil for a long time, even without a host plant, using survival several strategies. In this regard, disease-suppressive soils, characterized by a low disease incidence due to the presence of antagonist microorganisms, can be an excellent opportunity for the study mechanisms of soil-induced immunity, which can be applied in the development of a new generation of bioinoculants. Therefore, here we review the main effects of climate change on crops and pathogens, as well as the potential use of soil-suppressive microbiota as a natural source of biocontrol agents. Based on results of previous studies, we also propose a strategy for the optimization of microbiota assemblages, selected using a host-mediated approach. This process involves an increase in and prevalence of specific taxa during the transition from a conducive to a suppressive soil. This strategy could be used as a model to engineer microbiota assemblages for pathogen suppression, as well as for the reduction of abiotic stresses created due to global climate change.

Details

Language :
English
ISSN :
20797737
Volume :
10
Issue :
9
Database :
Directory of Open Access Journals
Journal :
Biology
Publication Type :
Academic Journal
Accession number :
edsdoj.04167f634504836ad40cb644df11d54
Document Type :
article
Full Text :
https://doi.org/10.3390/biology10090865