Back to Search Start Over

Genetic Engineering of the Kidney to Permanently Silence MHC Transcripts During ex vivo Organ Perfusion

Authors :
Yuliia Yuzefovych
Emilio Valdivia
Song Rong
Franziska Hack
Tamina Rother
Jessica Schmitz
Jan Hinrich Bräsen
Dirk Wedekind
Cyril Moers
Nadine Wenzel
Faikah Gueler
Rainer Blasczyk
Constanca Figueiredo
Source :
Frontiers in Immunology, Vol 11 (2020)
Publication Year :
2020
Publisher :
Frontiers Media S.A., 2020.

Abstract

Organ gene therapy represents a promising tool to correct diseases or improve graft survival after transplantation. Polymorphic variation of the major histocompatibility complex (MHC) antigens remains a major obstacle to long-term graft survival after transplantation. Previously, we demonstrated that MHC-silenced cells are protected against allogeneic immune responses. We also showed the feasibility to silence MHC in the lung. Here, we aimed at the genetic engineering of the kidney toward permanent silencing of MHC antigens in a rat model. We constructed a sub-normothermic ex vivo perfusion system to deliver lentiviral vectors encoding shRNAs targeting β2-microglobulin and the class II transactivator to the kidney. In addition, the vector contained the sequence for a secreted nanoluciferase. After kidney transplantation (ktx), we detected bioluminescence in the plasma and urine of recipients of an engineered kidney during the 6 weeks of post-transplant monitoring, indicating a stable transgene expression. Remarkably, transcript levels of β2-microglobulin and the class II transactivator were decreased by 70% in kidneys expressing specific shRNAs. Kidney genetic modification did not cause additional cell death compared to control kidneys after machine perfusion. Nevertheless, cytokine secretion signatures were altered during perfusion with lentiviral vectors as revealed by an increase in the secretion of IL-10, MIP-1α, MIP-2, IP-10, and EGF and a decrease in the levels of IL-12, IL-17, MCP-1, and IFN-γ. Biodistribution assays indicate that the localization of the vector was restricted to the graft. This study shows the potential to generate immunologically invisible kidneys showing great promise to support graft survival after transplantation and may contribute to reduce the burden of immunosuppression.

Details

Language :
English
ISSN :
16643224
Volume :
11
Database :
Directory of Open Access Journals
Journal :
Frontiers in Immunology
Publication Type :
Academic Journal
Accession number :
edsdoj.03df0d73f4524569bb7b2d84f49f1fc1
Document Type :
article
Full Text :
https://doi.org/10.3389/fimmu.2020.00265