Back to Search Start Over

LCDAE: Data Augmented Ensemble Framework for Lung Cancer Classification

Authors :
Zeyu Ren PhD
Yudong Zhang PhD
Shuihua Wang PhD
Source :
Technology in Cancer Research & Treatment, Vol 21 (2022)
Publication Year :
2022
Publisher :
SAGE Publishing, 2022.

Abstract

Objective: The only possible solution to increase the patients’ fatality rate is lung cancer early-stage detection. Recently, deep learning techniques became the most promising methods in medical image analysis compared with other numerous computer-aided diagnostic techniques. However, deep learning models always get lower performance when the model is overfitting. Methods: We present a Lung Cancer Data Augmented Ensemble (LCDAE) framework to solve the overfitting and lower performance problems in the lung cancer classification tasks. The LCDAE has 3 parts: The Lung Cancer Deep Convolutional GAN, which can synthesize images of lung cancer; A Data Augmented Ensemble model (DA-ENM), which ensembled 6 fine-tuned transfer learning models for training, testing, and validating on a lung cancer dataset; The third part is a Hybrid Data Augmentation (HDA) which combines all the data augmentation techniques in the LCDAE. Results: By comparing with existing state-of-the-art methods, the LCDAE obtains the best accuracy of 99.99%, the precision of 99.99%, and the F1-score of 99.99%. Conclusion: Our proposed LCDAE can overcome the overfitting issue for the lung cancer classification tasks by applying different data augmentation techniques, our method also has the best performance compared to state-of-the-art approaches.

Details

Language :
English
ISSN :
15330338
Volume :
21
Database :
Directory of Open Access Journals
Journal :
Technology in Cancer Research & Treatment
Publication Type :
Academic Journal
Accession number :
edsdoj.03dedd4bf29f4809b7b2e9d8d6b87fb0
Document Type :
article
Full Text :
https://doi.org/10.1177/15330338221124372