Back to Search
Start Over
Potential impact of climate change on the distribution of Capricornis milneedwardsii, a vulnerable mammal in China
- Source :
- Ecology and Evolution, Vol 14, Iss 6, Pp n/a-n/a (2024)
- Publication Year :
- 2024
- Publisher :
- Wiley, 2024.
-
Abstract
- Abstract Climate change significantly impacted on the survival, development, distribution, and abundance of living organisms. The Chinese serow Capricornis milneedwardsii, known as the “four unlike,” is a Class II nationally protected species in China. In this study, we predicted the geographical suitability of C. milneedwardsii under current and future climatic conditions using MaxEnt. The model simulations resulted in area under the receiver operating characteristic curve (AUC) values above 0.9 for both current and future climate scenarios, indicating the excellent performance, high accuracy, and credibility of the MaxEnt model. The results also showed that annual precipitation (Bio12), slope, elevation, and mean temperature of wettest quarter (Bio8) were the key environmental variables affecting the distribution of C. milneedwardsii, with contributions of 31.2%, 26.4%, 11%, and 10.3%, respectively. The moderately and highly suitable habitats were mainly located in the moist area of China, with a total area of 34.56 × 104 and 16.61 × 104 km2, respectively. Under future climate change scenarios, the areas of suitability of C. milneedwardsii showed an increasing trend. The geometric center of the total suitable habitats of C. milneedwardsii would show the trend of northwest expansion and southeast contraction. These findings could provide a theoretical reference for the protection of C. milneedwardsii in the future.
Details
- Language :
- English
- ISSN :
- 20457758
- Volume :
- 14
- Issue :
- 6
- Database :
- Directory of Open Access Journals
- Journal :
- Ecology and Evolution
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.0383bf51919f4302b0f9f4404bf7db12
- Document Type :
- article
- Full Text :
- https://doi.org/10.1002/ece3.11582