Back to Search Start Over

A Drosophila model identifies a critical role for zinc in mineralization for kidney stone disease.

Authors :
Thomas Chi
Man Su Kim
Sven Lang
Neelanjan Bose
Arnold Kahn
Lawrence Flechner
Sarah D Blaschko
Tiffany Zee
Gulinuer Muteliefu
Nichole Bond
Marysia Kolipinski
Sirine C Fakra
Neil Mandel
Joe Miller
Arvind Ramanathan
David W Killilea
Katja Brückner
Pankaj Kapahi
Marshall L Stoller
Source :
PLoS ONE, Vol 10, Iss 5, p e0124150 (2015)
Publication Year :
2015
Publisher :
Public Library of Science (PLoS), 2015.

Abstract

Ectopic calcification is a driving force for a variety of diseases, including kidney stones and atherosclerosis, but initiating factors remain largely unknown. Given its importance in seemingly divergent disease processes, identifying fundamental principal actors for ectopic calcification may have broad translational significance. Here we establish a Drosophila melanogaster model for ectopic calcification by inhibiting xanthine dehydrogenase whose deficiency leads to kidney stones in humans and dogs. Micro X-ray absorption near edge spectroscopy (μXANES) synchrotron analyses revealed high enrichment of zinc in the Drosophila equivalent of kidney stones, which was also observed in human kidney stones and Randall's plaques (early calcifications seen in human kidneys thought to be the precursor for renal stones). To further test the role of zinc in driving mineralization, we inhibited zinc transporter genes in the ZnT family and observed suppression of Drosophila stone formation. Taken together, genetic, dietary, and pharmacologic interventions to lower zinc confirm a critical role for zinc in driving the process of heterogeneous nucleation that eventually leads to stone formation. Our findings open a novel perspective on the etiology of urinary stones and related diseases, which may lead to the identification of new preventive and therapeutic approaches.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
19326203
Volume :
10
Issue :
5
Database :
Directory of Open Access Journals
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
edsdoj.037513fa2214d06aa353b1e53a952e3
Document Type :
article
Full Text :
https://doi.org/10.1371/journal.pone.0124150