Back to Search Start Over

Computing Shor’s algorithmic steps with interference patterns of classical light

Authors :
Wei Wang
Ziyang You
Shuangpeng Wang
Zikang Tang
Hou Ian
Source :
Scientific Reports, Vol 12, Iss 1, Pp 1-10 (2022)
Publication Year :
2022
Publisher :
Nature Portfolio, 2022.

Abstract

Abstract When considered as orthogonal bases in distinct vector spaces, the unit vectors of polarization directions and the Laguerre–Gaussian modes of polarization amplitude are inseparable, constituting a so-called classical entangled light beam. Equating this classical entanglement to quantum entanglement necessary for computing purpose, we show that the parallelism featured in Shor’s factoring algorithm is equivalent to the concurrent light-path propagation of an entangled beam or pulse train. A gedanken experiment is proposed for executing the key algorithmic steps of modular exponentiation and Fourier transform on a target integer N using only classical manipulations on the amplitudes and polarization directions. The multiplicative order associated with the sought-after integer factors is identified through a four-hole diffraction interference from sources obtained from the entangled beam profile. The unique mapping from the fringe patterns to the computed order is demonstrated through simulations for the case $$N=15$$ N = 15 .

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
20452322
Volume :
12
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.036dbc44f76147b486171bc841e85476
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-022-25796-w