Back to Search Start Over

Chalcogen passivation: an in-situ method to manipulate the morphology and electrical property of GaAs nanowires

Authors :
Zai-xing Yang
Yanxue Yin
Jiamin Sun
Luozhen Bian
Ning Han
Ziyao Zhou
Lei Shu
Fengyun Wang
Yunfa Chen
Aimin Song
Johnny C. Ho
Source :
Scientific Reports, Vol 8, Iss 1, Pp 1-9 (2018)
Publication Year :
2018
Publisher :
Nature Portfolio, 2018.

Abstract

Abstract Recently, owing to the large surface-area-to-volume ratio of nanowires (NWs), manipulation of their surface states becomes technologically important and being investigated for various applications. Here, an in-situ surfactant-assisted chemical vapor deposition is developed with various chalcogens (e.g. S, Se and Te) as the passivators to enhance the NW growth and to manipulate the controllable p-n conductivity switching of fabricated NW devices. Due to the optimal size effect and electronegativity matching, Se is observed to provide the best NW surface passivation in diminishing the space charge depletion effect induced by the oxide shell and yielding the less p-type (i.e. inversion) or even insulating conductivity, as compared with S delivering the intense p-type conductivity for thin NWs with the diameter of ~30 nm. Te does not only provide the surface passivation, but also dopes the NW surface into n-type conductivity by donating electrons. All of the results can be extended to other kinds of NWs with similar surface effects, resulting in careful device design considerations with appropriate surface passivation for achieving the optimal NW device performances.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
20452322
Volume :
8
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.0344619577a24189b903bc25d3a2f677
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-018-25209-x