Back to Search
Start Over
Hardy–Adams Inequalities on ℍ2 × ℝn-2
- Source :
- Advanced Nonlinear Studies, Vol 21, Iss 2, Pp 327-345 (2021)
- Publication Year :
- 2021
- Publisher :
- De Gruyter, 2021.
-
Abstract
- Let ℍ2{\mathbb{H}^{2}} be the hyperbolic space of dimension 2. Denote by Mn=ℍ2×ℝn-2{M^{n}=\mathbb{H}^{2}\times\mathbb{R}^{n-2}} the product manifold of ℍ2{\mathbb{H}^{2}} and ℝn-2(n≥3){\mathbb{R}^{n-2}(n\geq 3)}. In this paper we establish some sharp Hardy–Adams inequalities on Mn{M^{n}}, though Mn{M^{n}} is not with strictly negative sectional curvature. We also show that the sharp constant in the Poincaré–Sobolev inequality on Mn{M^{n}} coincides with the best Sobolev constant, which is of independent interest.
Details
- Language :
- English
- ISSN :
- 15361365 and 21690375
- Volume :
- 21
- Issue :
- 2
- Database :
- Directory of Open Access Journals
- Journal :
- Advanced Nonlinear Studies
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.02eb59192fea4a0584f15d191f02c1b9
- Document Type :
- article
- Full Text :
- https://doi.org/10.1515/ans-2021-2122