Back to Search Start Over

Hardy–Adams Inequalities on ℍ2 × ℝn-2

Authors :
Ma Xing
Wang Xumin
Yang Qiaohua
Source :
Advanced Nonlinear Studies, Vol 21, Iss 2, Pp 327-345 (2021)
Publication Year :
2021
Publisher :
De Gruyter, 2021.

Abstract

Let ℍ2{\mathbb{H}^{2}} be the hyperbolic space of dimension 2. Denote by Mn=ℍ2×ℝn-2{M^{n}=\mathbb{H}^{2}\times\mathbb{R}^{n-2}} the product manifold of ℍ2{\mathbb{H}^{2}} and ℝn-2(n≥3){\mathbb{R}^{n-2}(n\geq 3)}. In this paper we establish some sharp Hardy–Adams inequalities on Mn{M^{n}}, though Mn{M^{n}} is not with strictly negative sectional curvature. We also show that the sharp constant in the Poincaré–Sobolev inequality on Mn{M^{n}} coincides with the best Sobolev constant, which is of independent interest.

Details

Language :
English
ISSN :
15361365 and 21690375
Volume :
21
Issue :
2
Database :
Directory of Open Access Journals
Journal :
Advanced Nonlinear Studies
Publication Type :
Academic Journal
Accession number :
edsdoj.02eb59192fea4a0584f15d191f02c1b9
Document Type :
article
Full Text :
https://doi.org/10.1515/ans-2021-2122