Back to Search Start Over

Improving grain yield prediction through fusion of multi-temporal spectral features and agronomic trait parameters derived from UAV imagery

Authors :
Hongkui Zhou
Jianhua Yang
Weidong Lou
Li Sheng
Dong Li
Hao Hu
Source :
Frontiers in Plant Science, Vol 14 (2023)
Publication Year :
2023
Publisher :
Frontiers Media S.A., 2023.

Abstract

Rapid and accurate prediction of crop yield is particularly important for ensuring national and regional food security and guiding the formulation of agricultural and rural development plans. Due to unmanned aerial vehicles’ ultra-high spatial resolution, low cost, and flexibility, they are widely used in field-scale crop yield prediction. Most current studies used the spectral features of crops, especially vegetation or color indices, to predict crop yield. Agronomic trait parameters have gradually attracted the attention of researchers for use in the yield prediction in recent years. In this study, the advantages of multispectral and RGB images were comprehensively used and combined with crop spectral features and agronomic trait parameters (i.e., canopy height, coverage, and volume) to predict the crop yield, and the effects of agronomic trait parameters on yield prediction were investigated. The results showed that compared with the yield prediction using spectral features, the addition of agronomic trait parameters effectively improved the yield prediction accuracy. The best feature combination was the canopy height (CH), fractional vegetation cover (FVC), normalized difference red-edge index (NDVI_RE), and enhanced vegetation index (EVI). The yield prediction error was 8.34%, with an R2 of 0.95. The prediction accuracies were notably greater in the stages of jointing, booting, heading, and early grain-filling compared to later stages of growth, with the heading stage displaying the highest accuracy in yield prediction. The prediction results based on the features of multiple growth stages were better than those based on a single stage. The yield prediction across different cultivars was weaker than that of the same cultivar. Nevertheless, the combination of agronomic trait parameters and spectral indices improved the prediction among cultivars to some extent.

Details

Language :
English
ISSN :
1664462X
Volume :
14
Database :
Directory of Open Access Journals
Journal :
Frontiers in Plant Science
Publication Type :
Academic Journal
Accession number :
edsdoj.02c330cc39a4a598f9f041d2a5dae14
Document Type :
article
Full Text :
https://doi.org/10.3389/fpls.2023.1217448