Back to Search Start Over

Fixed neutron absorbers for improved nuclear safety and better economics in nuclear fuel storage, transport and disposal

Authors :
M. Lovecký
J. Závorka
J. Jiřičková
Z. Ondráček
R. Škoda
Source :
Nuclear Engineering and Technology, Vol 55, Iss 6, Pp 2288-2297 (2023)
Publication Year :
2023
Publisher :
Elsevier, 2023.

Abstract

Current designs of both large reactor units and small modular reactors utilize a nuclear fuel with increasing enrichment. This increasing demand for better nuclear fuel utilization is a challenge for nuclear fuel handling facilities. The operation with higher enriched fuels leads to reduced reserves to legislative and safety criticality limits of spent fuel transport, storage and final disposal facilities. Design changes in these facilities are restricted due to a boron content in steel and aluminum alloys that are limited by rolling, extrusion, welding and other manufacturing processes. One possible solution for spent fuel pools and casks is the burnup credit method that allows decreasing very high safety margins associated with the fresh fuel assumption in spent fuel facilities. This solution can be supplemented or replaced by an alternative solution based on placing the neutron absorber material directly into the fuel assembly, where its efficiency is higher than between fuel assemblies. A neutron absorber permanently fixed in guide tubes decreases system reactivity more efficiently than absorber sheets between the fuel assemblies. The paper summarizes possibilities of fixed neutron absorbers for various nuclear fuel and fuel handling facilities. Moreover, an absorber material was optimized to propose alternative options to boron. Multiple effective absorbers that do not require steel or aluminum alloy compatibility are discussed because fixed absorbers are placed inside zirconium or steel cladding.

Details

Language :
English
ISSN :
17385733
Volume :
55
Issue :
6
Database :
Directory of Open Access Journals
Journal :
Nuclear Engineering and Technology
Publication Type :
Academic Journal
Accession number :
edsdoj.02b06248ac4ac68362d5238237c9dd
Document Type :
article
Full Text :
https://doi.org/10.1016/j.net.2023.03.024