Back to Search Start Over

A lithiated zeolite-based protective layer to boost the cycle performance of lithium−oxygen batteries via redox mediator sieving

Authors :
Huiping Wu
Zhaohan Shen
Wei Yu
Xinbin Wu
Shundong Guan
Yu-Hsien Wu
Kaihua Wen
Haocheng Yuan
Ying Liang
Hirotomo Nishihara
Ce-Wen Nan
Liangliang Li
Source :
Next Energy, Vol 4, Iss , Pp 100135- (2024)
Publication Year :
2024
Publisher :
Elsevier, 2024.

Abstract

Lithium–oxygen (Li–O2) batteries with ultra-high theoretical specific energy (3500 Wh kg−1) have attracted significant attention, but the sluggish electrochemical processes of discharge product Li2O2 lead to poor cycling stability. Redox mediators (RMs) as soluble catalysts are widely used to assist with the electrochemical formation/decomposition of Li2O2. However, the shuttle effect of RMs causes severe deterioration of both RMs and Li metal anodes. Herein, for the first time we synthesize a lithiated zeolite-based protective layer on Li anodes to mitigate the shuttle effect of 2,2,6,6-tetramethylpiperidinyloxy (TEMPO) in Li–O2 batteries. The protective layer successfully blocks the migration of TEMPO toward the Li anode owing to the angstrom-level aperture size of lithiated zeolite. Due to the excellent redox-mediator-sieving capability of the protective layer, the cycle life of the Li−O2 batteries is significantly prolonged more than ten times at a current density of 250 mA g−1 and a limited capacity of 500 mA h g−1. This work demonstrates that the lithiated zeolite-based protective layer capable of molecular sieving is a facile and scalable way to mitigate the shuttle effect of RMs in Li–O2 batteries.

Details

Language :
English
ISSN :
2949821X
Volume :
4
Issue :
100135-
Database :
Directory of Open Access Journals
Journal :
Next Energy
Publication Type :
Academic Journal
Accession number :
edsdoj.029a94da0e1d4940bb917826d9e31521
Document Type :
article
Full Text :
https://doi.org/10.1016/j.nxener.2024.100135