Back to Search Start Over

Identification of transcriptionally active transposons in Barley

Authors :
Dongying Gao
Emma Fox-Fogle
Source :
BMC Genomic Data, Vol 24, Iss 1, Pp 1-10 (2023)
Publication Year :
2023
Publisher :
BMC, 2023.

Abstract

Abstract Background The genomes of many major crops including barley (Hordeum vulgare) consist of numerous transposons. Despite their important roles in crop genome evolution and morphological variations, most of these elements are silent or truncated and unable to be mobile in host genomes. Thus far, only a very limited number of active transposons were identified in plants. Results We analyzed the barley full-length cDNA (FLcDNA) sequences and detected 71 unique FLcDNAs exhibiting significant sequence similarity to the extant transposase proteins. These FLcDNAs were then used to search against the genome of a malting barley cultivar ‘Morex’, seven new intact transposons were identified. Sequence alignments indicated that six intact transposons contained the entire FLcDNAs whereas another one served as 3’ untranslated region (3’ UTR) of a barley gene. Our reverse transcription-PCR (RT-PCR) experiment further confirmed the expression of these six transposons and revealed their differential expression. We conducted genome-wide transposon comparisons and detected polymorphisms of three transposon families between the genomes of ‘Morex’ and other three genotypes including the wild barley (Hordeum spontaneum, B1K-04-12) and two cultivated barley varieties, ‘Golden Promise’ and ‘Lasa Goumang’. Lastly, we screened the transcripts of all annotated barley genes and found that some transposons may serve as the coding regions (CDSs) or UTRs of barley genes. Conclusion We identified six newly expressed transposons in the barley genome and revealed the recent mobility of three transposon families. Our efforts provide a valuable resource for understanding the effects of transposons on barley genome evolution and for developing novel molecular tools for barley genetic improvement and other research.

Details

Language :
English
ISSN :
27306844
Volume :
24
Issue :
1
Database :
Directory of Open Access Journals
Journal :
BMC Genomic Data
Publication Type :
Academic Journal
Accession number :
edsdoj.029588000df749eb823bba14cd1ef48f
Document Type :
article
Full Text :
https://doi.org/10.1186/s12863-023-01170-1