Back to Search
Start Over
Isolated cell-bound membrane vesicles (CBMVs) as a novel class of drug nanocarriers
- Source :
- Journal of Nanobiotechnology, Vol 18, Iss 1, Pp 1-16 (2020)
- Publication Year :
- 2020
- Publisher :
- BMC, 2020.
-
Abstract
- Abstract Background Cell-bound membrane vesicles (CBMVs) are a type of membrane vesicles different from the well-known extracellular vesicles (EVs). In recent years, the applications of EVs as drug delivery systems have been studied widely. A question may arise whether isolated CBMVs also have the possibility of being recruited as a drug delivery system or nanocarrier? Methods To test the possibility, CBMVs were isolated/purified from the surfaces of cultured endothelial cells, loaded with a putative antitumor drug doxorubicin (Dox), and characterized. Subsequently, cellular experiments and animal experiments using mouse models were performed to determine the in vitro and in vivo antitumor effects of Dox-loaded CBMVs (Dox-CBMVs or Dox@CBMVs), respectively. Results Both Dox-free and Dox-loaded CBMVs were globular-shaped and nanometer-sized with an average diameter of ~ 300–400 nm. Dox-CBMVs could be internalized by cells and could kill multiple types of cancer cells. The in vivo antitumor ability of Dox-CBMVs also was confirmed. Moreover, Quantifications of blood cells (white blood cells and platelets) and specific enzymes (aspartate aminotransferase and creatine kinase isoenzymes) showed that Dox-CBMVs had lower side effects compared with free Dox. Conclusions The data show that the CBMV-entrapped Doxorubicin has the antitumor efficacy with lower side effects. This study provides evidence supporting the possibility of isolated cell-bound membrane vesicles as a novel drug nanocarrier.
Details
- Language :
- English
- ISSN :
- 14773155
- Volume :
- 18
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Journal of Nanobiotechnology
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.022761bf522f4b0cbd00d9c5c5e7b052
- Document Type :
- article
- Full Text :
- https://doi.org/10.1186/s12951-020-00625-2