Back to Search
Start Over
DCRELM: dual correlation reduction network-based extreme learning machine for single-cell RNA-seq data clustering
- Source :
- Scientific Reports, Vol 14, Iss 1, Pp 1-12 (2024)
- Publication Year :
- 2024
- Publisher :
- Nature Portfolio, 2024.
-
Abstract
- Abstract Single-cell ribonucleic acid sequencing (scRNA-seq) is a high-throughput genomic technique that is utilized to investigate single-cell transcriptomes. Cluster analysis can effectively reveal the heterogeneity and diversity of cells in scRNA-seq data, but existing clustering algorithms struggle with the inherent high dimensionality, noise, and sparsity of scRNA-seq data. To overcome these limitations, we propose a clustering algorithm: the Dual Correlation Reduction network-based Extreme Learning Machine (DCRELM). First, DCRELM obtains the low-dimensional and dense result features of scRNA-seq data in an extreme learning machine (ELM) random mapping space. Second, the ELM graph distortion module is employed to obtain a dual view of the resulting features, effectively enhancing their robustness. Third, the autoencoder fusion module is employed to learn the attributes and structural information of the resulting features, and merge these two types of information to generate consistent latent representations of these features. Fourth, the dual information reduction network is used to filter the redundant information and noise in the dual consistent latent representations. Last, a triplet self-supervised learning mechanism is utilized to further improve the clustering performance. Extensive experiments show that the DCRELM performs well in terms of clustering performance and robustness. The code is available at https://github.com/gaoqingyun-lucky/awesome-DCRELM .
Details
- Language :
- English
- ISSN :
- 20452322
- Volume :
- 14
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Scientific Reports
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.014b54c79244d34ae4b6712483b0442
- Document Type :
- article
- Full Text :
- https://doi.org/10.1038/s41598-024-64217-y