Back to Search Start Over

A Sufficient and Necessary Condition for the Power-Exponential Function 1+1xαx to Be a Bernstein Function and Related nth Derivatives

Authors :
Jian Cao
Bai-Ni Guo
Wei-Shih Du
Feng Qi
Source :
Fractal and Fractional, Vol 7, Iss 5, p 397 (2023)
Publication Year :
2023
Publisher :
MDPI AG, 2023.

Abstract

In the paper, the authors find a sufficient and necessary condition for the power-exponential function 1+1xαx to be a Bernstein function, derive closed-form formulas for the nth derivatives of the power-exponential functions 1+1xαx and (1+x)α/x, and present a closed-form formula of the partial Bell polynomials Bn,k(H0(x),H1(x),⋯,Hn−k(x)) for n≥k≥0, where Hk(x)=∫0∞eu−1−ueuuk−1e−xudu for k≥0 are completely monotonic on (0,∞).

Details

Language :
English
ISSN :
25043110
Volume :
7
Issue :
5
Database :
Directory of Open Access Journals
Journal :
Fractal and Fractional
Publication Type :
Academic Journal
Accession number :
edsdoj.00c743356f88496f87f943972ec6bbe2
Document Type :
article
Full Text :
https://doi.org/10.3390/fractalfract7050397