Back to Search
Start Over
A Sufficient and Necessary Condition for the Power-Exponential Function 1+1xαx to Be a Bernstein Function and Related nth Derivatives
- Source :
- Fractal and Fractional, Vol 7, Iss 5, p 397 (2023)
- Publication Year :
- 2023
- Publisher :
- MDPI AG, 2023.
-
Abstract
- In the paper, the authors find a sufficient and necessary condition for the power-exponential function 1+1xαx to be a Bernstein function, derive closed-form formulas for the nth derivatives of the power-exponential functions 1+1xαx and (1+x)α/x, and present a closed-form formula of the partial Bell polynomials Bn,k(H0(x),H1(x),⋯,Hn−k(x)) for n≥k≥0, where Hk(x)=∫0∞eu−1−ueuuk−1e−xudu for k≥0 are completely monotonic on (0,∞).
Details
- Language :
- English
- ISSN :
- 25043110
- Volume :
- 7
- Issue :
- 5
- Database :
- Directory of Open Access Journals
- Journal :
- Fractal and Fractional
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.00c743356f88496f87f943972ec6bbe2
- Document Type :
- article
- Full Text :
- https://doi.org/10.3390/fractalfract7050397