Back to Search Start Over

Minimizing manual image segmentation turn-around time for neuronal reconstruction by embracing uncertainty.

Authors :
Stephen M Plaza
Louis K Scheffer
Mathew Saunders
Source :
PLoS ONE, Vol 7, Iss 9, p e44448 (2012)
Publication Year :
2012
Publisher :
Public Library of Science (PLoS), 2012.

Abstract

The ability to automatically segment an image into distinct regions is a critical aspect in many visual processing applications. Because inaccuracies often exist in automatic segmentation, manual segmentation is necessary in some application domains to correct mistakes, such as required in the reconstruction of neuronal processes from microscopic images. The goal of the automated segmentation tool is traditionally to produce the highest-quality segmentation, where quality is measured by the similarity to actual ground truth, so as to minimize the volume of manual correction necessary. Manual correction is generally orders-of-magnitude more time consuming than automated segmentation, often making handling large images intractable. Therefore, we propose a more relevant goal: minimizing the turn-around time of automated/manual segmentation while attaining a level of similarity with ground truth. It is not always necessary to inspect every aspect of an image to generate a useful segmentation. As such, we propose a strategy to guide manual segmentation to the most uncertain parts of segmentation. Our contributions include 1) a probabilistic measure that evaluates segmentation without ground truth and 2) a methodology that leverages these probabilistic measures to significantly reduce manual correction while maintaining segmentation quality.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
19326203
Volume :
7
Issue :
9
Database :
Directory of Open Access Journals
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
edsdoj.0060e72f32f742b0aedf5dc525fc2800
Document Type :
article
Full Text :
https://doi.org/10.1371/journal.pone.0044448