Back to Search Start Over

Bayesian Analysis for Extracting Properties of the Nuclear Equation of State from Observational Data Including Tidal Deformability from GW170817

Authors :
Alexander Ayriyan
David Alvarez-Castillo
David Blaschke
Hovik Grigorian
Source :
Universe, Vol 5, Iss 2, p 61 (2019)
Publication Year :
2019
Publisher :
MDPI AG, 2019.

Abstract

We develop a Bayesian analysis method for selecting the most probable equation of state under a set of constraints from compact star physics, which now include the tidal deformability from GW170817. We apply this method for the first time to a two-parameter family of hybrid equations of state that is based on realistic models for the hadronic phase (KVORcut02) and the quark matter phase (SFM α ) which produce a third family of hybrid stars in the mass⁻radius diagram. One parameter ( α ) characterizes the screening of the string tension in the string-flip model of quark matter while the other ( Δ P ) belongs to the mixed phase construction that mimics the thermodynamics of pasta phases and includes the Maxwell construction as a limiting case for Δ P = 0 . We present the corresponding results for compact star properties like mass, radius and tidal deformabilities and use empirical data for them in the newly developed Bayesian analysis method to obtain the probabilities for the model parameters within their considered range.

Details

Language :
English
ISSN :
22181997
Volume :
5
Issue :
2
Database :
Directory of Open Access Journals
Journal :
Universe
Publication Type :
Academic Journal
Accession number :
edsdoj.0024faccae44589bb7e2d11fad43fad
Document Type :
article
Full Text :
https://doi.org/10.3390/universe5020061