Back to Search
Start Over
Methods for photoacoustic image reconstruction exploiting properties of Curvelet frame
- Publication Year :
- 2022
- Publisher :
- University College London (University of London), 2022.
-
Abstract
- Curvelet frame is of special significance for photoacoustic tomography (PAT) due to its sparsifying and microlocalisation properties. In this PhD project, we explore the methods for image reconstruction in PAT with flat sensor geometry using Curvelet properties. This thesis makes five distinct contributions: (i) We investigate formulation of the forward, adjoint and inverse operators for PAT in Fourier domain. We derive a one-to-one map between wavefront directions in image and data spaces in PAT. Combining the Fourier operators with the wavefront map allows us to create the appropriate PAT operators for solving limited-view problems due to limited angular sensor sensitivity. (ii) We devise a concept of wedge restricted Curvelet transform, a modification of standard Curvelet transform, which allows us to formulate a tight frame of wedge restricted Curvelets on the range of the PAT forward operator for PAT data representation. We consider details specific to PAT data such as symmetries, time oversampling and their consequences. We further adapt the wedge restricted Curvelet to decompose the wavefronts into visible and invisible parts in the data domain as well as in the image domain. (iii) We formulate a two step approach based on the recovery of the complete volume of the photoacoustic data from the sub-sampled data followed by the acoustic inversion, and a one step approach where the photoacoustic image is directly recovered from the subsampled data. The wedge restricted Curvelet is used as the sparse representation of the photoacoustic data in the two step approach. (iv) We discuss a joint variational approach that incorporates Curvelet sparsity in photoacoustic image domain and spatio-temporal regularization via optical flow constraint to achieve improved results for dynamic PAT reconstruction. (v) We consider the limited-view problem due to limited angular sensitivity of the sensor (see (i) for the formulation of the corresponding fast operators in Fourier domain). We propose complementary information learning approach based on splitting the problem into visible and invisible singularities. We perform a sparse reconstruction of the visible Curvelet coefficients using compressed sensing techniques and propose a tailored deep neural network architecture to recover the invisible coefficients.
Details
- Language :
- English
- Database :
- British Library EThOS
- Publication Type :
- Dissertation/ Thesis
- Accession number :
- edsble.864028
- Document Type :
- Electronic Thesis or Dissertation