Back to Search
Start Over
Analytical and numerical models for velocity profile in vegetated open-channel flows
- Publication Year :
- 2020
- Publisher :
- University of Bradford, 2020.
-
Abstract
- The presence of vegetation in open channel flow has a significant influence on flow resistance, turbulence structures and sediment transport. This study will evaluate flow resistance and scale velocity profile in depth limited flow conditions, specifically investigating the impact of vegetation on the flow resistance under submerged flow conditions. The resistance induced by vegetation in open channel flows has been interpreted differently in literature, largely due to different definitions of friction factors or drag coefficients and the different Reynolds numbers. The methods utilized in this study are based on analytical and numerical models to investigate the effects of vegetation presence on flow resistance in open channel flows. The performing strategy approach was applied by three-dimensional computational fluid dynamics (CFD) simulations, using artificial cylinders for the velocity profile. This is to estimate the average flow velocity and resistance coefficients for flexible vegetation, which results in more accurate flow rate predictions, particularly for the case of low Reynolds number. This thesis shows different formulas from previous studies under certain conditions for a length scale metric, which normalises velocity profiles of depth limited open channel flows with submerged vegetation, using both calculated and simulated model work. It considers the submerged vegetation case in shallow flows, when the flow depth remains no greater than twice the vegetation height. The proposed scaling has been compared and developed upon work that have been influenced by logarithmic and power laws to present velocity profiles, in order to illustrate the variety of flow and vegetation configurations.
Details
- Language :
- English
- Database :
- British Library EThOS
- Publication Type :
- Dissertation/ Thesis
- Accession number :
- edsble.856833
- Document Type :
- Electronic Thesis or Dissertation