Back to Search
Start Over
Unraveling the effect of sex on human genetic architecture
- Publication Year :
- 2022
- Publisher :
- University of Edinburgh, 2022.
-
Abstract
- Sex is arguably the most important differentiating characteristic in most mammalian species, separating populations into different groups, with varying behaviors, morphologies, and physiologies based on their complement of sex chromosomes, amongst other factors. In humans, despite males and females sharing nearly identical genomes, there are differences between the sexes in complex traits and in the risk of a wide array of diseases. Sex provides the genome with a distinct hormonal milieu, differential gene expression, and environmental pressures arising from gender societal roles. This thus poses the possibility of observing gene by sex (GxS) interactions between the sexes that may contribute to some of the phenotypic differences observed. In recent years, there has been growing evidence of GxS, with common genetic variation presenting different effects on males and females. These studies have however been limited in regards to the number of traits studied and/or statistical power. Understanding sex differences in genetic architecture is of great importance as this could lead to improved understanding of potential differences in underlying biological pathways and disease etiology between the sexes and in turn help inform personalised treatments and precision medicine. In this thesis we provide insights into both the scope and mechanism of GxS across the genome of circa 450,000 individuals of European ancestry and 530 complex traits in the UK Biobank. We found small yet widespread differences in genetic architecture across traits through the calculation of sex-specific heritability, genetic correlations, and sex-stratified genome-wide association studies (GWAS). We further investigated whether sex-agnostic (non-stratified) efforts could potentially be missing information of interest, including sex-specific trait-relevant loci and increased phenotype prediction accuracies. Finally, we studied the potential functional role of sex differences in genetic architecture through sex biased expression quantitative trait loci (eQTL) and gene-level analyses. Overall, this study marks a broad examination of the genetics of sex differences. Our findings parallel previous reports, suggesting the presence of sexual genetic heterogeneity across complex traits of generally modest magnitude. Furthermore, our results suggest the need to consider sex-stratified analyses in future studies in order to shed light into possible sex-specific molecular mechanisms.
Details
- Language :
- English
- Database :
- British Library EThOS
- Publication Type :
- Dissertation/ Thesis
- Accession number :
- edsble.849128
- Document Type :
- Electronic Thesis or Dissertation
- Full Text :
- https://doi.org/10.7488/era/1910