Back to Search Start Over

The extraction and characterization of bio-oils from woody biomass and investigation of their use as antioxidants in model biodiesel

Authors :
Alwehaibi, Abdulrahman
Stark, Moray
Macquarrie, Duncan
Publication Year :
2016
Publisher :
University of York, 2016.

Abstract

Currently, antioxidants used in biodiesel to prevent degradation by autoxidation are synthesized from petroleum, which is non-renewable and has had a volatile price in recent years. Therefore, this thesis examines the possibility of using phenolic species from bio-oils derived from woodchips as antioxidants to protect biodiesel. Crude bio-oil (18.5% w/w of woodchips) was obtained by microwave-enhanced pyrolysis of spruce woodchips (picea abies). Characterization by multiple analytical techniques shows that a noticeable portion of the bio-oil consisted of aromatics (mostly phenols) and sugars. The phenolic content of the bio-oil was quantified and identified by GC-FID & GC-MS and was found to be ca. 6% (w/w), while the total phenolic content was determined by Folin-Ciocalteu (FC) assay was ca. 23% (w/w). To isolate these phenols, the crude bio-oil was further fractionated by supercritical CO2, and by two multi-solvent fractionation methods, namely: water-insoluble phase and water-soluble phase. The extract obtained with the highest phenolic content was a diethyl ether extract isolated from the water-soluble phase of crude bio-oil, at ca. 56% (w/w) by FC assay, with ca. 9% (w/w) identified and quantified by GC-MS & FID. The effectiveness of these renewable phenols in a model biodiesel was examined using methyl linoleate autoxidation in 1 bar of oxygen at 120 ○C. Addition of low amounts of crude bio-oil to methyl linoleate was sufficient to increase its induction time, and was comparable with a commercial antioxidant (butylated hydroxy-toluene). Further examination of methyl linoleate with bio-oil isolated extracts indicated that these were less effective than the parent crude bio-oil. This was striking because some of the isolated extracts contained higher phenolic concentrations than the bio-oil. The antioxidancy of a chemical model of the crude bio-oil phenol consisting of six representative components at appropriate concentrations was approximately three times less active than the crude bio-oil, suggesting that components with noticeable antioxidancy remain to be identified.

Subjects

Subjects :
540

Details

Language :
English
Database :
British Library EThOS
Publication Type :
Dissertation/ Thesis
Accession number :
edsble.752628
Document Type :
Electronic Thesis or Dissertation