Back to Search
Start Over
Numerical analysis and multi-precision computational methods applied to the extant problems of Asian option pricing and simulating stable distributions and unit root densities
- Publication Year :
- 2014
- Publisher :
- University of St Andrews, 2014.
-
Abstract
- This thesis considers new methods that exploit recent developments in computer technology to address three extant problems in the area of Finance and Econometrics. The problem of Asian option pricing has endured for the last two decades in spite of many attempts to find a robust solution across all parameter values. All recently proposed methods are shown to fail when computations are conducted using standard machine precision because as more and more accuracy is forced upon the problem, round-off error begins to propagate. Using recent methods from numerical analysis based on multi-precision arithmetic, we show using the Mathematica platform that all extant methods have efficacy when computations use sufficient arithmetic precision. This creates the proper framework to compare and contrast the methods based on criteria such as computational speed for a given accuracy. Numerical methods based on a deformation of the Bromwich contour in the Geman-Yor Laplace transform are found to perform best provided the normalized strike price is above a given threshold; otherwise methods based on Euler approximation are preferred. The same methods are applied in two other contexts: the simulation of stable distributions and the computation of unit root densities in Econometrics. The stable densities are all nested in a general function called a Fox H function. The same computational difficulties as above apply when using only double-precision arithmetic but are again solved using higher arithmetic precision. We also consider simulating the densities of infinitely divisible distributions associated with hyperbolic functions. Finally, our methods are applied to unit root densities. Focusing on the two fundamental densities, we show our methods perform favorably against the extant methods of Monte Carlo simulation, the Imhof algorithm and some analytical expressions derived principally by Abadir. Using Mathematica, the main two-dimensional Laplace transform in this context is reduced to a one-dimensional problem.
- Subjects :
- 332.64
Laplace transforms
Numerical inversion
Multi-precision arithmetic
Asian options
Infinitely divisible distributions
Stable distributions
Unit root distributions
Characteristic functions
Generalized hypergeometric function
Meijer G function
Fox H function
Euler method
Post-Widder method
Bromwich integral
Gaver-Wynn-Rho algorithm
Fixed Talbot method
Unified Gaver-Stehfest algorithm
Unified Euler algorithm
Unified Talbot algorithm
Laguerre method
Spectral series expansion
Constructive complex analysis
Asymptotic method
PDE method
Monte Carlo simulation
Turnbull and Wakeman approximation
Milevsky and Posner approximation
Joint densities
Joint distribution functions
Transformation of joint density
Mathematica
Subjects
Details
- Language :
- English
- Database :
- British Library EThOS
- Publication Type :
- Dissertation/ Thesis
- Accession number :
- edsble.644829
- Document Type :
- Electronic Thesis or Dissertation