Back to Search Start Over

Topological and symbolic dynamics of the doubling map with a hole

Authors :
Alcaraz Barrera, Rafael
Sidorov, Nikita
Hewitt, Richard
Publication Year :
2014
Publisher :
University of Manchester, 2014.

Abstract

This work motivates the study of open dynamical systems corresponding to the doubling map. In particular, the dynamical properties of the attractor of the doubling map when a symmetric, centred open interval is removed are studied. Using the arithmetical properties of the binary expansion of the points on the boundary of the removed interval, we study properties such as topological transitivity, the specification property and intrinsic ergodicity. The properties of the function that associates to each hole $(a,b)$ the topological entropy of the attractor of the considered dynamical system are also shown. For these purposes, a subshift corresponding to an element of the lexicographic world is associated to each attractor and the mentioned properties are studied symbolically.

Details

Language :
English
Database :
British Library EThOS
Publication Type :
Dissertation/ Thesis
Accession number :
edsble.632293
Document Type :
Electronic Thesis or Dissertation