Back to Search Start Over

Roadmap to fault tolerant quantum computation using topological qubit arrays

Authors :
Aasen, David
Aghaee, Morteza
Alam, Zulfi
Andrzejczuk, Mariusz
Antipov, Andrey
Astafev, Mikhail
Avilovas, Lukas
Barzegar, Amin
Bauer, Bela
Becker, Jonathan
Bello-Rivas, Juan M.
Bhaskar, Umesh
Bocharov, Alex
Boddapati, Srini
Bohn, David
Bommer, Jouri
Bonderson, Parsa
Borovsky, Jan
Bourdet, Leo
Boutin, Samuel
Brown, Tom
Campbell, Gary
Casparis, Lucas
Chakravarthi, Srivatsa
Chao, Rui
Chapman, Benjamin J.
Chatoor, Sohail
Christensen, Anna Wulff
Codd, Patrick
Cole, William
Cooper, Paul
Corsetti, Fabiano
Cui, Ajuan
van Dam, Wim
Dandachi, Tareq El
Daraeizadeh, Sahar
Dumitrascu, Adrian
Ekefjärd, Andreas
Fallahi, Saeed
Galletti, Luca
Gardner, Geoff
Gatta, Raghu
Gavranovic, Haris
Goulding, Michael
Govender, Deshan
Griggio, Flavio
Grigoryan, Ruben
Grijalva, Sebastian
Gronin, Sergei
Gukelberger, Jan
Haah, Jeongwan
Hamdast, Marzie
Hansen, Esben Bork
Hastings, Matthew
Heedt, Sebastian
Ho, Samantha
Hogaboam, Justin
Holgaard, Laurens
Van Hoogdalem, Kevin
Indrapiromkul, Jinnapat
Ingerslev, Henrik
Ivancevic, Lovro
Jablonski, Sarah
Jensen, Thomas
Jhoja, Jaspreet
Jones, Jeffrey
Kalashnikov, Kostya
Kallaher, Ray
Kalra, Rachpon
Karimi, Farhad
Karzig, Torsten
Kimes, Seth
Kliuchnikov, Vadym
Kloster, Maren Elisabeth
Knapp, Christina
Knee, Derek
Koski, Jonne
Kostamo, Pasi
Kuesel, Jamie
Lackey, Brad
Laeven, Tom
Lai, Jeffrey
de Lange, Gijs
Larsen, Thorvald
Lee, Jason
Lee, Kyunghoon
Leum, Grant
Li, Kongyi
Lindemann, Tyler
Lucas, Marijn
Lutchyn, Roman
Madsen, Morten Hannibal
Madulid, Nash
Manfra, Michael
Markussen, Signe Brynold
Martinez, Esteban
Mattila, Marco
Mattinson, Jake
McNeil, Robert
Mei, Antonio Rodolph
Mishmash, Ryan V.
Mohandas, Gopakumar
Mollgaard, Christian
de Moor, Michiel
Morgan, Trevor
Moussa, George
Narla, Anirudh
Nayak, Chetan
Nielsen, Jens Hedegaard
Nielsen, William Hvidtfelt Padkær
Nolet, Frédéric
Nystrom, Mike
O'Farrell, Eoin
Otani, Keita
Paetznick, Adam
Papon, Camille
Paz, Andres
Petersson, Karl
Petit, Luca
Pikulin, Dima
Pons, Diego Olivier Fernandez
Quinn, Sam
Rajpalke, Mohana
Ramirez, Alejandro Alcaraz
Rasmussen, Katrine
Razmadze, David
Reichardt, Ben
Ren, Yuan
Reneris, Ken
Riccomini, Roy
Sadovskyy, Ivan
Sainiemi, Lauri
Saldaña, Juan Carlos Estrada
Sanlorenzo, Irene
Schaal, Simon
Schmidgall, Emma
Sfiligoj, Cristina
da Silva, Marcus P.
Sinha, Sarat
Soeken, Mathias
Sohr, Patrick
Stankevic, Tomas
Stek, Lieuwe
Strøm-Hansen, Patrick
Stuppard, Eric
Sundaram, Aarthi
Suominen, Henri
Suter, Judith
Suzuki, Satoshi
Svore, Krysta
Teicher, Sam
Thiyagarajah, Nivetha
Tholapi, Raj
Thomas, Mason
Tom, Dennis
Toomey, Emily
Tracy, Josh
Troyer, Matthias
Turley, Michelle
Turner, Matthew D.
Upadhyay, Shivendra
Urban, Ivan
Vaschillo, Alexander
Viazmitinov, Dmitrii
Vogel, Dominik
Wang, Zhenghan
Watson, John
Webster, Alex
Weston, Joseph
Williamson, Timothy
Winkler, Georg W.
van Woerkom, David J.
Wütz, Brian Paquelet
Yang, Chung Kai
Yu, Richard
Yucelen, Emrah
Zamorano, Jesús Herranz
Zeisel, Roland
Zheng, Guoji
Zilke, Justin
Zimmerman, Andrew
Publication Year :
2025

Abstract

We describe a concrete device roadmap towards a fault-tolerant quantum computing architecture based on noise-resilient, topologically protected Majorana-based qubits. Our roadmap encompasses four generations of devices: a single-qubit device that enables a measurement-based qubit benchmarking protocol; a two-qubit device that uses measurement-based braiding to perform single-qubit Clifford operations; an eight-qubit device that can be used to show an improvement of a two-qubit operation when performed on logical qubits rather than directly on physical qubits; and a topological qubit array supporting lattice surgery demonstrations on two logical qubits. Devices that enable this path require a superconductor-semiconductor heterostructure that supports a topological phase, quantum dots and coupling between those quantum dots that can create the appropriate loops for interferometric measurements, and a microwave readout system that can perform fast, low-error single-shot measurements. We describe the key design components of these qubit devices, along with the associated protocols for demonstrations of single-qubit benchmarking, Clifford gate execution, quantum error detection, and quantum error correction, which differ greatly from those in more conventional qubits. Finally, we comment on implications and advantages of this architecture for utility-scale quantum computation.<br />Comment: 11+6 pages, 8+5 figures

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2502.12252
Document Type :
Working Paper