Back to Search
Start Over
Probabilistic Super-Resolution for High-Fidelity Physical System Simulations with Uncertainty Quantification
- Publication Year :
- 2025
-
Abstract
- Super-resolution (SR) is a promising tool for generating high-fidelity simulations of physical systems from low-resolution data, enabling fast and accurate predictions in engineering applications. However, existing deep-learning based SR methods, require large labeled datasets and lack reliable uncertainty quantification (UQ), limiting their applicability in real-world scenarios. To overcome these challenges, we propose a probabilistic SR framework that leverages the Statistical Finite Element Method and energy-based generative modeling. Our method enables efficient high-resolution predictions with inherent UQ, while eliminating the need for extensive labeled datasets. The method is validated on a 2D Poisson example and compared with bicubic interpolation upscaling. Results demonstrate a computational speed-up over high-resolution numerical solvers while providing reliable uncertainty estimates.
- Subjects :
- Computer Science - Machine Learning
Statistics - Machine Learning
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2502.10280
- Document Type :
- Working Paper