Back to Search Start Over

On the Inference of Sociodemographics on Reddit

Authors :
Cinus, Federico
Monti, Corrado
Bajardi, Paolo
Morales, Gianmarco De Francisci
Publication Year :
2025

Abstract

Inference of sociodemographic attributes of social media users is an essential step for computational social science (CSS) research to link online and offline behavior. However, there is a lack of a systematic evaluation and clear guidelines for optimal methodologies for this task on Reddit, one of today's largest social media. In this study, we fill this gap by comparing state-of-the-art (SOTA) and probabilistic models. To this end, first we collect a novel data set of more than 850k self-declarations on age, gender, and partisan affiliation from Reddit comments. Then, we systematically compare alternatives to the widely used embedding-based model and labeling techniques for the definition of the ground-truth. We do so on two tasks: ($i$) predicting binary labels (classification); and ($ii$)~predicting the prevalence of a demographic class among a set of users (quantification). Our findings reveal that Naive Bayes models not only offer transparency and interpretability by design but also consistently outperform the SOTA. Specifically, they achieve an improvement in ROC AUC of up to $19\%$ and maintain a mean absolute error (MAE) below $15\%$ in quantification for large-scale data settings. Finally, we discuss best practices for researchers in CSS, emphasizing coverage, interpretability, reliability, and scalability. The code and model weights used for the experiments are publicly available.\footnote{https://anonymous.4open.science/r/SDI-submission-5234}

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2502.05049
Document Type :
Working Paper