Back to Search Start Over

Bayesian Parameter Shift Rule in Variational Quantum Eigensolvers

Authors :
Pedrielli, Samuele
Anders, Christopher J.
Funcke, Lena
Jansen, Karl
Nicoli, Kim A.
Nakajima, Shinichi
Publication Year :
2025

Abstract

Parameter shift rules (PSRs) are key techniques for efficient gradient estimation in variational quantum eigensolvers (VQEs). In this paper, we propose its Bayesian variant, where Gaussian processes with appropriate kernels are used to estimate the gradient of the VQE objective. Our Bayesian PSR offers flexible gradient estimation from observations at arbitrary locations with uncertainty information and reduces to the generalized PSR in special cases. In stochastic gradient descent (SGD), the flexibility of Bayesian PSR allows the reuse of observations in previous steps, which accelerates the optimization process. Furthermore, the accessibility to the posterior uncertainty, along with our proposed notion of gradient confident region (GradCoRe), enables us to minimize the observation costs in each SGD step. Our numerical experiments show that the VQE optimization with Bayesian PSR and GradCoRe significantly accelerates SGD and outperforms the state-of-the-art methods, including sequential minimal optimization.<br />Comment: 8 pages, 5 figures. arXiv admin note: text overlap with arXiv:2502.01704

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2502.02625
Document Type :
Working Paper