Back to Search Start Over

Analysis of LLMs vs Human Experts in Requirements Engineering

Authors :
Hymel, Cory
Johnson, Hiroe
Publication Year :
2025

Abstract

The majority of research around Large Language Models (LLM) application to software development has been on the subject of code generation. There is little literature on LLMs' impact on requirements engineering (RE), which deals with the process of developing and verifying the system requirements. Within RE, there is a subdiscipline of requirements elicitation, which is the practice of discovering and documenting requirements for a system from users, customers, and other stakeholders. In this analysis, we compare LLM's ability to elicit requirements of a software system, as compared to that of a human expert in a time-boxed and prompt-boxed study. We found LLM-generated requirements were evaluated as more aligned (+1.12) than human-generated requirements with a trend of being more complete (+10.2%). Conversely, we found users tended to believe that solutions they perceived as more aligned had been generated by human experts. Furthermore, while LLM-generated documents scored higher and performed at 720x the speed, their cost was, on average, only 0.06% that of a human expert. Overall, these findings indicate that LLMs will play an increasingly important role in requirements engineering by improving requirements definitions, enabling more efficient resource allocation, and reducing overall project timelines.<br />Comment: 8 pages, 15 figures

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2501.19297
Document Type :
Working Paper