Back to Search
Start Over
LLM Program Optimization via Retrieval Augmented Search
- Publication Year :
- 2025
-
Abstract
- With the advent of large language models (LLMs), there has been a great deal of interest in applying them to solve difficult programming tasks. Recent work has demonstrated their potential at program optimization, a key challenge in programming languages research. We propose a blackbox adaptation method called Retrieval Augmented Search (RAS) that performs beam search over candidate optimizations; at each step, it retrieves in-context examples from a given training dataset of slow-fast program pairs to guide the LLM. Critically, we find that performing contextual retrieval based on an LLM-generated natural language description significantly outperforms retrieval based on the source code. In addition, we propose a method called AEGIS for improving interpretability by decomposing training examples into "atomic edits" that are significantly more incremental in nature. We show that RAS performs 1.8$\times$ better than prior state-of-the-art blackbox adaptation strategies, and that AEGIS performs 1.37$\times$ better while performing significantly smaller edits.
- Subjects :
- Computer Science - Machine Learning
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2501.18916
- Document Type :
- Working Paper