Back to Search Start Over

De Sitter Horizon Edge Partition Functions

Authors :
Law, Y. T. Albert
Publication Year :
2025

Abstract

One-loop $S^{d+1}$ path integrals were shown to factorize into two parts: a bulk thermal ideal gas partition function in a $dS_{d+1}$ static patch and an edge partition function associated with degrees of freedom living on $S^{d-1}$. Here, we analyze the $\mathfrak{so}(d)$ structure of the edge partition functions for massive and massless totally symmetric tensors of arbitrary rank in any $d\geq 3$. For linearized Einstein gravity on $S^{d+1}$, we find that the edge partition function receives contributions from shift-symmetric vector and scalar fields on $S^{d-1}$ that nonlinearly realize the isometry group $SO(d+2)$ of $S^{d+1}$, suggesting a possible interpretation in terms of an embedded $S^{d-1}$ brane.<br />Comment: 52 pages+appendices, 2 figures

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2501.17912
Document Type :
Working Paper