Back to Search Start Over

Classes of simple derivations on polynomial rings $k[x_1,x_2, \ldots ,x_n]$

Authors :
Mishra, Sumit Chandra
Mondal, Dibyendu
Shukla, Pankaj
Publication Year :
2025

Abstract

Let $k$ be a field of characteristic zero. Let $m$ and $\alpha$ be positive integers. For $n\geq 2$, let $R_n=k[x_1,x_2,\dots,x_n]$ with the $k$-derivation $d_n$ given by $d_n=(1-x_1x_2^{\alpha})\partial_{x_1}+x_1^m\partial_{x_2}+x_2\partial_{x_3}+\dots+x_{n-1}\partial_{x_n}$. We prove that for all odd $\alpha \geq 1$ and all odd $m\geq 3$, $d_n$ is a simple derivation on $R_n$ and $d_n(R_n)$ contains no units. This generalizes a result of D. A. Jordan. We also show that the isotropy group of $d_n$ is conjugate to a subgroup of translations.<br />Comment: 13 pages; Comments are welcome

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2501.14415
Document Type :
Working Paper