Back to Search
Start Over
Transfer matrix approach to quantum systems subject to certain Lindblad evolution
- Publication Year :
- 2025
-
Abstract
- Solving for time evolution of a many particle system whose dynamics is governed by Lindblad equation is hard. We extend the use of transfer matrix approach to a class of Linblad equations that admit a closed hierarchy of two point correlators. An example that we treat is the XX spin chain, i.e., free fermions, subject to the local on-site dephasing, but can be extended to other Hermitian dissipators, e.g., non-local dephasing. We find a simple expression of the Green's function in the Laplace domain. The method can be used to get analytical results in the thermodynamic limit, for instance, to get the evolution of magnetization density and to explicitly see the cross over between the ballistic and diffusive behavior, or to show that the correlations between operators at distance $l$ decay with time as $1/t^{\lceil l/2 \rceil+1/2}$. It also provides a fast numerical method to determine the evolution of the density with a complexity scaling with the system size more favorably than in previous methods, easily allowing one to study systems with $\sim 10^6$ spins.<br />Comment: 11 pages and 4 figures
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2501.13560
- Document Type :
- Working Paper