Back to Search
Start Over
A Dual-Polarization Feature Fusion Network for Radar Automatic Target Recognition Based On HRRP Sequence
- Publication Year :
- 2025
-
Abstract
- Recent advances in radar automatic target recognition (RATR) techniques utilizing deep neural networks have demonstrated remarkable performance, largely due to their robust generalization capabilities. To address the challenge for applications with polarimetric HRRP sequences, a dual-polarization feature fusion network (DPFFN) is proposed along with a novel two-stage feature fusion strategy. Moreover, a specific fusion loss function is developed, which enables the adaptive generation of comprehensive multi-modal representations from polarimetric HRRP sequences. Experimental results demonstrate that the proposed network significantly improves performance in radar target recognition tasks, thus validating its effectiveness. The PyTorch implementation of our proposed DPFFN is available at https://github.com/xmpan/DPFFN.
- Subjects :
- Electrical Engineering and Systems Science - Signal Processing
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2501.13541
- Document Type :
- Working Paper