Back to Search
Start Over
Extracting General-use Transformers for Low-resource Languages via Knowledge Distillation
- Publication Year :
- 2025
-
Abstract
- In this paper, we propose the use of simple knowledge distillation to produce smaller and more efficient single-language transformers from Massively Multilingual Transformers (MMTs) to alleviate tradeoffs associated with the use of such in low-resource settings. Using Tagalog as a case study, we show that these smaller single-language models perform on-par with strong baselines in a variety of benchmark tasks in a much more efficient manner. Furthermore, we investigate additional steps during the distillation process that improves the soft-supervision of the target language, and provide a number of analyses and ablations to show the efficacy of the proposed method.<br />Comment: LoResLM Workshop @ COLING 2025
- Subjects :
- Computer Science - Computation and Language
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2501.12660
- Document Type :
- Working Paper