Back to Search Start Over

Secure Composition of Quantum Key Distribution and Symmetric Key Encryption

Authors :
Dey, Kunal
Safavi-Naini, Reihaneh
Publication Year :
2025

Abstract

Quantum key distribution (QKD) allows Alice and Bob to share a secret key over an insecure channel with proven information-theoretic security against an adversary whose strategy is bounded only by the laws of physics. Composability-based security proofs of QKD ensure that using the established key with a one-time-pad encryption scheme provides information theoretic secrecy for the message. In this paper, we consider the problem of using the QKD established key with a secure symmetric key-based encryption algorithm and use an approach based on hybrid encryption to provide a proof of security for the composition. Hybrid encryption was first proposed as a public key cryptographic algorithm with proven security for messages of unrestricted length. We use an extension of this framework to correlated randomness setting (Sharifian et al. in ISIT 2021) to propose a quantum-enabled Key Encapsulation Mechanism (qKEM) and quantum-enabled hybrid encryption (qHE), and prove a composition theorem for the security of the qHE. We construct a qKEM with proven security using an existing QKD (Portmann et al. in Rev. of Mod. Physics 2022). Using this qKEM with a secure Data Encapsulation Mechanism (DEM), that can be constructed using a one-time symmetric key encryption scheme, results in an efficient encryption system for unrestricted length messages with proved security against an adversary with access to efficient computations on a quantum computer (i.e. post-quantum secure encryption without using any computational assumptions.)

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2501.08435
Document Type :
Working Paper