Back to Search
Start Over
A Four-dimensional Gauge Theory Perspective on Quantum K-theory
- Publication Year :
- 2025
-
Abstract
- The two-dimensional gauged linear sigma model has provided a physical model for the quantum cohomology of a K\"ahler manifold, $X$. A three-dimensional version of such construction has recently been shown to shed light on models of quantum K-theory of $X$. We consider an $\mathcal{N}=1$ four-dimensional version consisting of a $U(1)$ vector multiplet and chiral multiplets, generalizing the two-dimensional $\mathcal{N}=(2,2)$ setup. We compute the four-dimensional partition function on $D^2\times \mathbb{T}^2$ and demonstrates that it satisfies a difference equation which reduces to the deformed quantum K-theoretic one in the appropriate limit. We also demonstrate, though indirectly, that 4d invariants reduce to 3d quantum K-theory invariants in the same limit.<br />Comment: 36 pages
- Subjects :
- High Energy Physics - Theory
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2501.02394
- Document Type :
- Working Paper