Back to Search
Start Over
CuClarabel: GPU Acceleration for a Conic Optimization Solver
- Publication Year :
- 2024
-
Abstract
- We present the GPU implementation of the general-purpose interior-point solver Clarabel for convex optimization problems with conic constraints. We introduce a mixed parallel computing strategy that processes linear constraints first, then handles other conic constraints in parallel. This mixed parallel computing strategy currently supports linear, second-order cone, exponential cone, and power cone constraints. We demonstrate that integrating a mixed parallel computing strategy with GPU-based direct linear system solvers enhances the performance of GPU-based conic solvers, surpassing their CPU-based counterparts across a wide range of conic optimization problems. We also show that employing mixed-precision linear system solvers can potentially achieve additional acceleration without compromising solution accuracy.
- Subjects :
- Mathematics - Optimization and Control
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2412.19027
- Document Type :
- Working Paper